On the occurrence of <y> for /i(:)/ in Late West Saxon

Hirokazu NOGUCHI

1. Introduction

The purpose of the present study is to re-examine the behavior of /i(:)/ in conjunction with the use of <y> in Late West Saxon (LWS). In the edition used for this study, /i/ from whatever source is represented by both <i> and <y>, the latter becoming much more common.¹ Thus we find him / hym from original /i/ (Section 2), gifan / gyfan, and niht / nyht, due to the monophthongization of <ie> from palatal diphthongization of /e/ (Section 3.1) and i–umlaut of diphthongs (Sections 3.2.2, 3.2.3), respectively, drihten / dryhten due to the unrounding of /y/ before palatals (Section 4.2), and cniht / cnyht due to palatal umlaut (Section 5.1).²

The problem may arise as to whether the <y> in those instances is a mere graphic variant of <i> or of phonetic significance. If it is of the former, then the <y> can be regarded as an inverted spelling for <i> (i.e. him = hym). But this may be rejected since /y/ is retained, that is, a general unrounding of /y(:)/ has not taken place (see Sections 3.2, 1, 4.1). If it is of the latter, then the <y> should represent /y/ or something that is phonetically similar to it (i.e. him > hym). Gradon (1962: 75) and Hogg (1992a: §5, 170) favor the view that the <y> has phonetic significance, [i]. Gradon states that close, or tense [i] appears in palatal contexts, and open, or lax [i] in unstressed syllables and non–palatal contexts. She also argues that long /i:/ remains unchanged because it tends to be tenser than short /i/. According to Hogg, on the other hand, in Early West Saxon (EWS) /i/ tends to appear as <y> in various contexts, and in LWS the <y> spellings are rather more numerous and even appear occasionally in the case of /i:. As regards the use of <y> for [i], Gradon connects it with the use of <y> for [y], the result of laxing of /y/, saying that [i] and [y] became sufficiently similar to form a sharp contrast with [i] and were thus spelled with <y>.

In this study we accept their interpretation of <y> as representing [i], the result of laxing of /i/. We will show that /i/ tends toward laxing regardless of the phonetic contexts, leading to the [i] – [i] alternation. A parallel change can be supposed for long /i:/ in the light of the frequent occurrence of <y> for the LWS reflexes of <ie> due to palatal diphthongization of /e:/ and i–umlaut of diphthongs.

2. Original /i/

The total number of occurrences of original /i/ amounts to 2295, of which 444 (19%) appear with <i>, and the remaining 1851 (81%) appear with <y>: the ratio of <y> to <i> is approximately 4 to 1 (Fig. 1).³ This would help us assume that <y> for /i/ is phonetically significant. For convenience, our examples could be divided into three groups according to the circumstances under which original /i/ occurs: in weakly–stressed syllables, non–palatal contexts and

¹
²
³
Table 1. The relative frequency of <i> and <y> for original /i/.

<table>
<thead>
<tr>
<th></th>
<th><i></th>
<th><y></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly–stressed syllables</td>
<td>277x (16%)</td>
<td>1417x (84%)</td>
</tr>
<tr>
<td>Non–palatal contexts</td>
<td>139x (27%)</td>
<td>371x (73%)</td>
</tr>
<tr>
<td>Palatal contexts</td>
<td>28x (31%)</td>
<td>63x (69%)</td>
</tr>
<tr>
<td>Total</td>
<td>444x (19%)</td>
<td>1851x (81%)</td>
</tr>
</tbody>
</table>

palatal contexts.

2.1. In weakly–stressed syllables

Let us deal first with the group consisting of weakly stressed forms, or non–lexical items, like pronouns, prepositions, conjunctions, in which <y> (84%) is much more numerous than <i> (16%).

(1)

(a) Pronouns: hym 292x (<i> 22x), hyne 138x (<i> 4x), hys 178x (<i> 105x), hyt 97x (<i> 18x), hyre 25x (<i> 3x), etc.
(b) Forms of pes ‘this’: jys 44x (<i> 3x), jysne 7x, jyssum 23x (<i> 2x), jysses 5x, jysses (re) 9x (<i> 1x), jyssa 2x (<i> 1x), etc.
(c) Forms of bēon ‘be’: byst 3x, byð 97x (<i> 14x), ys 211x (<i> 15x), nys 21x (<i> 1x), synd (on) 80x (<i> 1x), etc.
(d) Others: myd ‘with’ 112x (<i> 4x), nyðer ‘down’ 7x, syðdan ‘after’ 10x, etc.

It is highly probable that these word classes were phonetically subject to reduction, or retraction, as in the case of the present–day English, see Ladefoged (1993: 84 – 88). Gradon (1952: 75) argues that lack of stress caused phonetic reduction to [i], which is distinct from tense [i]. Our examples seem to support the view that /i/ was subject to laxing to [i] in weakly–stressed forms, where we find a strong tendency for <y> to substitute for <i>. There are two words in which <i> is more numerous than <y>: gif ‘if’ 61x (<y> 17x) and in ‘in’ 14x (<y> 6x); for the latter see Section 2.2 below.

2.2. In non–palatal contexts

Next we will turn to the group consisting of stressed forms in which original /i/ occurs in non–palatal contexts. We find a total of 510 examples, of which 139 (27%) appear with <i>, and the remaining 371 (73%) <y>.

(2)

(a) Examples where <y> predominantly occurs: byddan ‘pray’ 15x (<i> 10x), brygan ‘bring’ 6x (<i> 4x), clypian ‘call’ 27x (<i> 2x), dryncan ‘drink’ 13x (<i> 6x), myddan ‘middle’ 10x (<i> 1x), nyman ‘take’ 25x (<i> 5x), etc.
(b) Examples where $<y>$ regularly occurs: byndan ‘bind’ 8x, byldn ‘blind’ 17x, fyndan ‘find’ 8x, ģemyltsian ‘pity’ 12x, nyðerian ‘accuse’ 6x, syttan ‘sit’ 19x, pryddan ‘third’ 7x, etc.

As in in (cited above), $<y>$ is less likely to occur initially before /n/ (Scragg 1992: xli): innan 8x ($<y>$ 4x), into 10x ($<y>$ 0x). We also find innode ‘the inside (of the body)’ 3x against one instance of ynndum. It is true, on the other hand, that there is a strong tendency to prefer $<y>$ in proximity to labials (/ʃ/, /p/, /b/, /m/) and liquids (/ʃ/, /l/) (Lewenz 1908: 279–286, Campbell 1959: §318), but its occurrence appears not to be restricted to those environments. Note, in this connection, the exclusive use of $<y>$ for niðerian and sittan, which suggests that /i/ also tends to lax to [i] under primary stress, as argued by Gradon (1962: 75) and Hogg (1992a: §5, 173).

2.3. In palatal contexts

Finally let us look at the group consisting of stressed forms in which original /i/ occurs in proximity to palatals. In 63 (69%) out of 91 cases we find $<y>$ forms.

(3)

dyhte ‘he arranged’ 2x, dysc ‘dish’ 1x ($<i>$ 3x), fysc ‘fish’ 1x ($<i>$ 4x), forlyger ‘adultery’ 2x ($<i>$ 2x), gyft ‘gift’ 4x ($<i>$ 6x), mycel ‘much’ 46x ($<i>$ 3x), nygen ‘nine’ 2x ($<i>$ 1x), scycelle ‘cloak’ 2x, tyccenu ‘kids’ 2x, tygel ‘tile’ 1x ($<i>$ 1x)

$<i>$, but not $<y>$, occurs in liçegende ‘lying’ 3x, sige ‘victory’ 1x, piçgað ‘they take’ 1x, wrigen (e) ‘covered’ 2x, and wrige prel.sg.subj. 1x. Gradon (1962: 76) restricts the occurrence of [i] to unstressed syllables and non-palatal contexts, since [i] could have been retained in palatal contexts. Our examination of the relevant forms shows, however, that the laxing of /i/ has been extended to palatal contexts, in spite of unrounding effect exerted by palatals, see Hogg (1992b: 117). Thus we find $<i>$ for tense [i] and $<y>$ for lax [i] in palatal contexts as well as weakly-stressed syllables and non-palatal contexts, $<y>$ becoming much more common. Chronologically speaking, the laxing is assumed to have started in weakly stressed forms, followed by non-palatal contexts and then palatal contexts. From a phonological point of view, the two phones in question can occur in the same position without affecting meaning. For example, [him] and [hm] are two different pronunciations of the same lexical item. They can, therefore, be said to be in free variation, belonging to the same phoneme, /i/.

In what follows, we will discuss the behavior of /i(:)/ in palatal contexts to show that the laxing of /i(:)/ tends to occur in those environments.

3. Monophthongization of $<ie>$
3.1. Palatal diphthongization of /e(:)/

Palatal diphthongization of /e(:)/ was originally to the diphthongs represented by the digraph $<ie>$, see Campbell (1959: §185), which subsequently monophthongized to the sounds represented by both $<i>$ and $<y>$ in LWS. The number of occurrences of the monophthongization
of <ie> due to this change amounts to 63, of which 43 (68%) appear with <i>, and the remaining 20 (32%) appear with <y>.\(^4\)

(4)
(a) Palatal diphthongization of /e/ (〈i〉 41x, 〈y〉 12x): 〈i〉 gifan and forms 'give' 24x, giife 'gift' 2x, aŭgil 'he rewards' 1x, agilde pret.sg. 1x, gitan and forms 'get' 13x; 〈y〉 gyfan and forms 3x, forms of gyldan 'reward' 7x, gyse 'yes' 1x, gyte pres. subj. 1x

(b) Palatal diphthongization of /eː/ (〈i〉 2x, 〈y〉 8x): 〈i〉 gĭl 'yet' 1x, gesci 'shoes' 1x; 〈y〉 ĝĭl 7x, gescy 1x.

Concerning the development of <ie>, Quirk and Wrenn (1957: §193) state that the so-called 'unstable i', which represented the sound of a nature to develop into high front rounded vowels, became /yː/ in LWS, and then unrounded to /iː/ in proximity to palatals. This account would suggest the following development: giefan > gĭfan > gyfan > gifan. It seems implausible, however, that 'unstable i', probably posited as [i] (Hogg 1992a: §5.163), became rounded after the palatal, which could have had an unrounding effect. Thus we should suppose: giefan > gĭfan > gĭfan ([jivan]). This would be true for gesci, showing the monophthongization of <ie> due to palatal diphthongization of the iː-umlauted /eː/, see Campbell (1959: §184). The LWS reflexes could then be regarded as identical with original /iː/\(^5\).

Given that the 〈i〉 in gifan / gesci represents the high front unrounded /iː/, what sound does the 〈y〉 in gyfan / gescy represent?\(^6\) In terms of the orthographic system of Old English, 〈y〉 represents the high front rounded /yː/, while 〈i〉 represents the high unrounded /iː/ (Kuhn (1961: 524)), which would induce us to suppose that the 〈y〉 in gyfan / gescy is a mere graphic variant of 〈i〉 (i.e. gifan = gyfan). Then, why does 〈y〉 for /iː/ occur? This problem may be overcome by asserting that the reflexes of palatal diphthongization of /eː/ merged with original /iː/ in LWS, where /iː/ was subsequently subject to laxing giving [ɪː] spelled 〈y〉, see Section 2.3. The phonetic interpretation of gifan would then be [jivan], and of gɪfan [jivan]. A parallel change can be supposed for gesci/gesci. However, Hogg (1992a: §5.57n2) regards the 〈y〉 spellings as representing /yː/, the normal LWS development of <ie>, see below. Phonologically speaking, the two phones [ɪː] and [ɪː] can be said to be in free variation, since they involve the same lexical item. We can thus claim that they are allophones of a single phoneme.

3.2. i–Umlaut of diphthongs

The iː-umlaut of /æː(ː)a/ and /iː(ː)o/, was originally to the diphthongs represented by the digraph <ie>, see Campbell (1959: §§200–201), which subsequently underwent monophthongization to the high front vowels represented by 〈y〉 and 〈i〉 in LWS. According to Kuhn (1961: 530), 〈ie〉 was rounded in LWS to /yː/ “unless prevented from rounding by a palatal consonant.” We could then divide our examples into two groups according to the phonetic circumstances under which the monophthongization of <ie> took place: in non–palatal and palatal contexts.
3.2.1. In non-palatal contexts

The normal development of \(<\text{ie}\>) is, in LWS, to /\text{y}(::)/ in non-palatal contexts. With regard to this development, Hogg (1992a: §5.163) states that “the loss of the second element could cause its rounding to be transferred to the first element.” The total number of occurrences of the monophthongization of \(<\text{ie}\>) in these contexts amounts to 284, of which we find 245 (86\%) \(<\text{y}\>) forms as against 39 (14\%) \(<\text{i}\>) forms. The higher percentage of \(<\text{y}\>) would imply that a general unrounding of /\text{y}(::)/ has not taken place. This retention of /\text{y}(::)/ in non–palatal contexts makes it difficult to regard \(<\text{y}\>) for /\text{i}(::)/ (e.g. hym, gyfan) as an inverted spelling for \(<\text{i}\>).

(5)

(a) \text{i–Umault of /æa/} (\(<\text{y}\>) 25x, \(<\text{i}\>) 2x): \(<\text{y}\>) \text{gesylt} ‘salted’ 1x, \text{yldra} ‘older’ 7x, \text{besyrwan} ‘deceive’ 1x, etc.; \(<\text{i}\>) \text{hwirfdon} ‘they turned’ 1x, \text{wirgeað} ‘they curse’ 1x

(b) \text{i–Umault of /io/} (\(<\text{y}\>) 36x, \(<\text{i}\>) 1x): \(<\text{y}\>) \text{hyrde} ‘shepherd’ 4x, \text{wyrē} ‘worthy’ 9x, \text{yrre} ‘anger’ 3x, etc.; \(<\text{i}\>) \text{wirē} 1x

(c) \text{i–Umault of /æ: a/} (\(<\text{y}\>) 130x, \(<\text{i}\>) 3x): \(<\text{y}\>) \text{hrēyan} ‘carry out’ 5x, \text{hŷran} ‘hear’ 68x, \text{gelŷfan} ‘believe’ 16x, etc.; \(<\text{i}\>) \text{gehēde} ‘he heard’ 2x, \text{gehêrde} past part. 1x

(d) \text{i–Umault of /i: o/} (\(<\text{y}\>) 54x, \(<\text{i}\>) 33x): \(<\text{y}\>) \text{fynd} ‘enemy’ 3x, \text{nŷwe} ‘new’ 7x, \text{ansŷn} ‘face’ 9x, \text{pŷstre} ‘dark’ etc.; \(<\text{i}\>) \text{nîwe} 1x, \text{gestrînde} ‘he gained’ 32x

We find \(<\text{i}\>) in \text{hwirfdon}, \text{wirgeað} and \text{wirē}, where \(<\text{y}\>) is usual because of the rounding environment of /\text{w}/ + /\text{r}/ (Hogg 1992a: §5.163). Hence the \(<\text{i}\>) spellings might be of phonological insignificance. The \(<\text{i}\>) in \text{gehērde} and \text{nîwe} might also be phonologically insignificant, since the following /\text{r}/ and /\text{w}/ are unlikely to induce unrounding. For \text{strŷnan}, we find 32x \(<\text{i}\>) forms as against 13x \(<\text{y}\>) forms. It seems doubtful that \(<\text{ie}\>) developed to /\text{i}:/: before /\text{n}/, where the occurrence of \(<\text{i}\>) forms is restricted to only one word. Note in this connection that \text{fynd}, \text{ansŷn} and \text{fŷn} ‘ten’ 4x always occur with \(<\text{y}\>).

Given the development to /\text{y}(::)/ in non–palatal contexts, it is safe to assume that the \(<\text{y}\>) in \text{yldra} is identified differently from that of \text{gyfan} (see Section 3.1). The same is true of \text{hŷran} – \text{gŷt}. As suggested by Quirk and Wrenn (1957: §193), the \text{i–umaulted reflexes in non–palatal contexts are taken to have merged with original /\text{y}(::)/, the outputs of the \text{i–umault of /u(::)/}, see Section 4.1 below.

3.2.2. In palatal contexts: before palatals

Let us look at occurrences of the monophthongization of \(<\text{ie}\>) in palatal contexts. We find almost equal numbers of forms with \(<\text{i}\>) (26x) and \(<\text{y}\>) (25x) for its reflexes before palatals, where \(<\text{ie}\>) is generally assumed to have been monophthongized, in LWS, to the high front unrounded /\text{i}(::)/, see e.g. Campbell (1959: §301).

(6)

(a) \text{i–Umault of /æa/} (\(<\text{i}\>) 4x, \(<\text{y}\>) 13x): \(<\text{i}\>) \text{mihtigung} ‘powerful’ 1x, \text{niht ‘night’} 1x, \text{nihta}
1x, *ofslih*ō ‘he kills’ 1x; <y> *myht* ‘power’ 1x, *myhta* 1x, *unmyhtelīc* ‘impossible’ 1x, *nyht* and forms 6x, *manslyht* ‘murder’ 1x, *manslyhtas* 1x, *ofslyhst* ‘you kill’ 1x, *wyst* ‘he grows’ 1x

(b) i–Umlaut of /io/ (⟨<i⟩ 3x, ⟨<y⟩ 4x⟩) : ⟨<i⟩ gesihō ‘he sees’ 3x; ⟨<y⟩ gesyhō 1x, gesyhst 2x; gesyhōe ‘vision’ 1x

(c) i–Umlaut of /œ:a/ (⟨<i⟩ 17x, ⟨<y⟩ 7x⟩) : ⟨<i⟩ *gebīgedum* ‘vowed’ 1x, *gecgiεanne* ‘call’ 1x, *gecgiεedum* ‘called’ 1x, *diğle* ‘secret’ 1x, *diğlum* 5x / *dihim* 1x, *diçelice*‘secretly’ 3x, *diçolynyssa* ‘secrecy’ 1x, *foretiğe* ‘market’ 1x, *untiçeaö* ‘untie!’ 1x, *getiçede* ‘tied’ 1x; ⟨<y⟩ bığdon ‘they vowed’ 1x, *diğle* 1x, *diçlum* 1x, *biçet* ‘lightening’ 2x, *nyḥstān* ‘nearest’ 1x / *nyxtan* 1x

(d) i–Umlaut of /i:/o/ (⟨<i⟩ 2x, ⟨<y⟩ 1x⟩) : ⟨<i⟩ onlıhte ‘lightened’ 2x; ⟨<y⟩ onlıhte 1x

We will consider the relation of the monophthongization to other changes, to show that the shift of <ie> to /i(ː)/ is due to the influence of the following palatal (e.g. [j], [ç]). Firstly, the extension of the suffix –ol occurs in *diğol*, which is from *diçgil*, see Holthausen (1934). Secondly, in such forms as *nyxtan* and *wyst*, <ie> was monophthongized to /i(ː)/ because of the following palatal [ç] (*nîeherit*, etc.), and /xs/ (due to vowel syncope) became /ks/ later, see Campbell (1959: §146), Hogg (1992a: §7.6). In *nyḥstān*, *ofslyhst* and *gesyhst*, <hs> probably indicates a merely orthographic variation.

As with the reflexes of palatal diphthongization of /e(ː)/, the i–umlauted reflexes of diphthongs before palatals are taken to have merged with original /i(ː)/ in LWS. Therefore, it can safely be assumed that the <y> in *nyht* represents lax [i], identical with the <y> forms in the circumstances of palatal diphthongization of /e(ː)/ (e.g. *gyfan*). The same may be claimed for *bığdon*, *diğle*, *nyxtan*, etc.

3.2.3. In palatal contexts: after palatals

After palatals, <y> forms (18x) predominate over <i> forms (2x). It appears that Campbell (1959: §301) and Hogg (1992a: §§5.57n2, 5.163) restrict the shift to /i(ː)/ only to positions before palatals. But <ie> is likely to be monophthongized to /i(ː)/ after palatals as well as before palatals, as suggested by Quirk and Wrenn (1957: §193), Kuhn (1961: 530).

(7)

(a) i–Umlaut of /æa/ (⟨<i⟩ 0x, ⟨<y⟩ 8x⟩) : ⟨<y⟩ *cyrr* ‘I turn’ 2x, *geçyrr* (e) ‘turned’ 3x; *gyrlum* ‘clothing’ 3x

(b) i–Umlaut of /io/ (⟨<i⟩ 0x, ⟨<y⟩ 1x⟩) : ⟨<y⟩ *gyrne* ‘you desire’ 1x

(c) i–Umlaut of /œ:a/ (⟨<i⟩ 2x, ⟨<y⟩ 8x⟩) : ⟨<i⟩ *ğiμað* ‘heed!’ 2x; ⟨<y⟩ *beçɨpað* ‘they sell’ 2x, *beçɨp* imp.sg. 1x, *çiçependum* ‘merchant’ 1x, *ğiμað* 1x; *förɨyme* ‘you transgress’ 1x, *förɨyndon* pret. pl. 1x; *sciçtan* ‘sheet’ 1x

(d) i–Umlaut of /iːo/ (⟨<i⟩ 0x, ⟨<y⟩ 1x⟩) : ⟨<y⟩ *ćeçenu* ‘chickens’ 1x

The frequent occurrence of <y> might make us suppose that the preceding palatal had no unrounding effect, but there are reasons to assume that the monophthongization of <ie> after palatals is to /i(ː)/. First of all, unrounding is probably implied by *ğiμað* ([j]:maθ]). This
would suggest that unrounding influence is as likely to be exerted by the preceding palatal as the following one. Recall gyfan, where <ie> was monophthongized to /i/ because of the preceding palatal, with subsequent laxing of /i/ to [i], see Section 3.1. Secondly, one might argue that the <y> in such forms as cyrre, gyrlum, and gyre is phonetically [y], resulting from the following consonant cluster rC, but the breaking–inducing cluster was no longer sufficiently velarized to cause retraction after the time of breaking. We could then claim that the <y> in cyrre (phonetically [tʃʃrə]), for example, is equivalent to the <y> in such forms as gyft, gyfan and nyht.

From the above it follows that the i–umlauted reflexes merged with original /i(:)/ in palatal contexts (i.e. before and after palatals), where /i(:)/ was subsequently subject to laxing to [i(:)] written <y>. Thus, [niçt] / [niçt] and [jiːмаθ] / [jiːмаθ] are two different pronunciations of the same lexical item, respectively. The two phones each appear in identical phonetic environments without any effect on meaning, and therefore they can be said to be in free variation.

4. i–Umlaut of /u(:)/

The i–umlaut of /u(:)/ produced the high front rounded /y(:)/, with which the i–umlauted reflexes of diphthongs in non–palatal contexts are taken to have merged (see Section 3.2.1). The subsequent unrounding of /y(:)/ before palatals resulted in /i(:)/. We could then divide our examples into two groups according to the circumstances under which the i–umlaut took place: non–palatal and palatal contexts.

4.1. In non–palatal contexts

The total number of occurrences of the i–umlaut of /u(:)/ before non–palatal amounts to 445, of which 419 (94%) appear with <y>, and the remaining 26 (6%) appear with <i>. This would imply that a general unrounding has not taken place. Since /y(:)/ is retained in those contexts, <y> for /i(:)/ cannot be taken as an inverted spelling for <i>.

(8)

(a) i–Umlaut of /u/ (i.e. <y> 332x, <i> 26x): <y> bytta ‘cask’ 4x, pytt ‘hole’ 2x, ymb ‘round’ 18 x, etc.; <i> cining ‘king’ 1x (<y> 87x), filigean ‘follow’ 4x (<y> 16x), gefilled ‘fulfilled’ 2x (<y> 23x), gilt ‘guilt’ 3x (<y> 5x), hingrian ‘hunger’ 7x (<y> 2x), gemingod ‘reminded’ 1x (<y> 1x), sin ‘sin’ 2x (<y> 12x), gesingað ‘he sins’ 1x (<y> 3x), ontin(e)ðe ‘(he) opened’ 2x (<y> 4x), untindon ‘they opened’ 1x (<y> 0x), píncað ‘they appear’ 1x (<y> 1x), wírcað ‘they work’ 1x (<y> 0x)
(b) i–Umlaut of /u:/ (i.e. <y> 87x, <i> 0x): <y> bríðe ‘bride’ 8x, fýr ‘fire’ 12x, ɹðum ‘waves’ 2x, etc.

We also find <i> forms in non–palatal contexts. Some of these cases could be explained. Such forms as hingrian, gemingod, and gesingað might be due to the influence of, say, sengan ‘singe’, where the i–umlauted vowel is followed by /n/ + palatal. This is true of píncað. The <i> in wírcað might be of phonological insignificance, since the development to /y/ is usual in positions between /w/ and /r/, see Section 3.2.1. Otherwise, it might be due to the following /n/
+ palatal. Gradon (1962: 69) explains *filigdon* as a sporadic unrounding before the *i*-glide. In this case, however, *<ig>* represents */i/ (i.e. *<filigdon> = *<filidon>*), see Hogg (1992a: §7.75). Thus the first *<i>* in *filigdon* could be regarded as due to the influence of */i/ rather than the *i*-glide. Let us then move on to prefixed verbs in conjunction with stress pattern. Since Old English */y(:)/ are not permitted to occur in weakly stressed syllables (see Kuhn 1961: 536), long */y:/ in *betyned* ‘he hedged’ 1x with the unstressed prefix *be-* can be assumed to be preserved. The same may be claimed for *ontyn* ‘I open’ 1x. In *untindon*, on the other hand, the prefix *un-* should be stressed (*áuntindon*), see Campbell (1959: §75). Thus the following development would be expected: *úntyn* > *úntyn* > *úntin*, where */y:/, the result of shortening of */y:/, was unrounded to */i/ in the weakly stressed syllable. The *<i>* in *ontin(e)de* could be interpreted as due to the influence of *untindon*.

4.2 In palatal contexts

We have observed in the immediately preceding section that the normal development of *i*-umlaut of */u(:)/ is to */y(:)/. Thus, the *<y>* in *cyning* is identical with that of *yldra* (see Section 3.2.1) in that both represent */y/,. It is generally agreed (e.g. Campbell 1959: §316, Gradon 1962: 74) that the *i*-umlauted reflexes were unrounded, in LWS, to */i(:)/ before palatals. The total number of occurrences of the *i*-umlaut of */u(:)/ in those environments is 57, of which 16 (28%) have *<i>* forms, and the remaining 41 (72%) have *<y>* forms.

(9)

(a) *i*-Umlaut of */u/: (<i> 15x, <y> 41x) : <i> *bičgan* ‘buy’ 1x, *gebīgō* ‘he buys’ 1x, *drihten* and forms* ‘lord’ 13x ; <y> *byčgan* 2x, *dryhten* and forms 38x, *géhytad* ‘they hope’ 1x
(b) *i*-Umlaut of */u:/ (<i> 1x, <y> 0 x) : <i> *drige* ‘dry’ 1x

Instances for the unrounding of */y(:)/ are provided by the *<i>* forms such as *bičgan*, *drihten* and *drige*. Quirk and Wrenn (1957: §188) suggest that the *<y>*forms represent */y/ (e.g. *dryhten*), but this seems unlikely because of unrounding effect exerted by the following palatal. We have seen in Section 3.2.2 that the *i*-umlauted reflexes of diphthongs in palatal contexts were monophthongized to */i(:)/, which subsequently tended to lax to *[i(:)]* written */y/<>, as in *nyht*, where the *<y>* represents lax *[i]*. If the unrounding of */y(:)/ > */i(:)/ before palatals is parallel to the monophthongization of *<ie>* to */i(:)/ in palatal contexts, as argued by Hogg (1992b: 117), then all the *<y>* forms listed above might better be interpreted as representing lax *[i]*. The higher percentage of *<y>* for */i/ would confirm that */i/ is subject to laxing to *[i]*, leading to the *[i] – *[i]* alternation.

5. Monophthongization of */eo/* and */io/*

5.1. Palatal umlaut

Palatal umlaut, by which the breaking short diphthongs */eo/* and */io/* underwent monophthongization before *ht*, *hs*, *hō* (Hogg 1992a: §5.113), is a further source of */i/*. Thus we find forms such as *riht* and *wrixl*. For *riht*, we can postulate *”reht*, which was broken to *”reocht*.

—19—
Then *reuht was monophthongized back to *reht and raised finally to riht [riːt]. For wrixl, we can postulate *wrihsl, which was broken to *wriohsl, and monophthongized finally to wrixl [wriksl]. In view of these processes it could be supposed that the velar fricative [x] which had caused breaking became palatal [ç], when followed by a dental consonant, see Kuhn (1970: 32), Howell (1991: 97).

We find a total of 129 occurrences of palatal umlaut in four different words. Of the total, as many as 116 (90%) appear with <y>.10

\[\text{(10)}\]

\[
\begin{align*}
<i> & \text{cnihtas ‘boys’ 2x, cnihtum 2x, rihte ‘right’ 1x, unriht ‘bad’ 1x, rihtwis ‘righteous’ 6x, \text{parrihte ‘immediately’ 1x}} \\
<y> & \text{cnyht and forms 72x, ryht 1x, unryht 7x, ryhtwis (-) 27x, \text{parryhte(s) 3x, syx ‘six’ 1x, syxtan ‘sixth’ 2x, syxtig ‘sixty’ 2x, gewryxl ‘exchange’ 1x}}
\end{align*}
\]

According to Campbell (1959: §305), palatal umlaut occurs where the consonant cluster is final, as in cniht, and where the front vowel e follows, as in cnihtes, and cnihte, while back vowels inhibit palatal umlaut, as in cneohitas. In our edition, palatal umlaut also occurs where the consonant cluster is followed by back vowels, as in cnihtas, cnihtum, for which see Hogg (1992a: §5.117n1).

Good evidence for the laxing of /i/ is provided by the <y> forms such as cnyht, ryht and syx, which is proof that /i/ shows a marked tendency to laxing. Hence, the <y> in the circumstances of palatal umlaut is identical with the <y> in forms such as gyft, gyfan, nyht, cyre and dryhten, but should be distinguished from the <y> in such forms as yldra and cyning.

6. Summary

We have observed that there is an increasing tendency for /i/ of whatever origin to appear as <y>, which has phonetic significance. Original /i/ shows a marked tendency to lax to [i] spelled <y> not only in weakly stressed syllables and non-palatal contexts but in palatal contexts. The monophthongization of <ie> in palatal contexts, the unrounding of /y/ before palatals, and palatal umlaut gave /i/, which is subsequently subject to laxing to [i] spelled <y>. Thus, <y> for /i/ in these environments might be regarded as identical with <y> for original /i/ in that both represent [i]. The laxing of /i/ has resulted in the [i] – [i] alternation. These phones can occur in the same position without affecting meaning. We can therefore claim that they are in free variation, belonging to a single phoneme.

If we turn to the behavior of long /iː/, we find that the reflexes of <ie> in palatal contexts tend toward laxing, which has led to the [iː] – [iː] alternation, as in gīt – gīt and gīmað – gīmað. It seems likely, then, that the laxing of /iː/ occurred almost at the same time as the laxing of /i/.

REFERENCES
FOOTNOTES

1 The data are taken from the West–Saxon Gospel of St. Matthew. The edition we have used for this study is that of Grüberg (1967). This is based on the MS II. 2. II in the University Library, Cambridge, designated A, in which the Gospel of St. Matthew is complete. The handwriting of the MS is fixed as the second half of the eleventh century.

2 <ie> due to resolution of the hiatus i – e is not included.

3 Original /iː/ lies outside the scope of this study. We exclude the cases involving preceding /w/, which could have had the effect of rounding, as in wylle ‘I wish’, see Quirk and Wrenn (1957: §187).

4 There is no evidence of diphthongization for ġē ‘ye’ (not ‘yea’), presumably because of the development in unstressed syllables (Campbell 1959: §185).

5 In view of the LWS development to /iː/ in palatal contexts and /yː/ in non-palatal contexts, we could assume that <ie> represented /iːa/ or /iːy/, as suggested by Luick (1914–40: §191), Hogg (1992a: §§5.49, 5.163).

6 Lass and Anderson (1975: 282) and Colman (1985: 12–17) claim that the <i> in ġiefan is no more than a diacritic indicating the palatal nature of the preceding consonant.

7 Alongside usual diglum, we find one instance of dīhlum, where <h> suggests fricative devoicing at the end of a syllable, see Sisam and Sisam (1959: 25).

8 Breaking is dated earlier than i-umlaut. It is also earlier than the metathesis of /r/ in WS, as in gers (< gers) ‘grass’, see Campbell (1959: §§155, 459).

9 We find one instance of Dryhtyn, in which <y> for unstressed /e/ may be of no significance.
Palatal umlaut is lexically restricted, as we find *gefœht* ‘battle’, where */eo*/ remains unaffected. Long vowels are not affected, thus *lœht* ‘light’.