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Abstract

In this paper we give an analytical method to the aircraft sequencing problem on a single runway
so as to minimize the sum of the time interval called the time separation between successive landing
aircraft in a final approach. If cost matrix of the separation time holds Monge properties, the
optimum sequence of this problem is given by a non-heavier order of the types classed on aircraft
take-off weight. Although the proposed method is a solution method for solving the static aircraft
sequencing problem fundamentall‘y. this method is extended to the dynamic aircraft sequencing
problem here. The validity of this method is shown by comparison by the numerical examples with

other methods containing the technique of the First Come-First Served strategy.
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1. Introduction

A demand for air traffic in the world in recent years is on a way of an increase. However
the present condition is insufficient in a total volume of equipments of the runway for landing and
take-off sufficient in order to fulfill such demand of the airtraffic in the main cities in the world.
In this paper the method of improving the use efficiency of the runway classified into a short-term
policy is considered, which is considered as policies relieving the confusion based on the increase
in demand for air traffic. Nowadays, the research from a viewpoint which performs efficient use

of the runway towards effective realization of the air traffic flow, especially the theoretical
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research of the methodology such as reducing a burden in a work of airport controllers can’t be
seen so much though it is very important.

The problem which determines a desirable landing order of the aircraft which entries into the
terminal area of an airport is called the aircraft sequencing problem (ASP). When there are many
aircraft, the ASP is difficult in calculation execution to obtain the optimum solution since the ASP
is the problem called the NP-hard similar to the traveling-salesman problem. The ASP is
classified in two types of “dynamic” and “static”. Dear et al, [5] discussed the dynamic problem in
which the mixed composition of the type of aircraft waiting a landing within the station called a
stack is changed every time. They have avoided an increase in the amount of calculation of
dynamic problems by restricting the scope of its problem between each period, and limiting a
movable quantity from the landing order of the aircraft by the First-Come First-Served (FCFS)
which is a simple strategy to land the aircraft at the order of an arrival. The method which
limited the maximum movable quantity from the landing order of the aircraft based on the FCFS is
known as the Constrained Position Shifting (CPS), which is the concept first introduced by Dear et
al. This prespecified movable number is called the Maximum Position Shift (MPS). In the static
problem they emphasize that all the aircraft taken into the consideration for landing should exist in
the same stack at the same time so that arbitrary aircraft can land at any time. Psaraftis [6]
which pointed out the importance of including all the aircraft taken into consideration formulated
the single machine-N job group scheduling problem with the CPS by the dynamic programming
(DP), and was applied to the static ASP. He denotes that the running time of the DP algorithm is
both polynomial functions of the maximum number per group of aircraft classified by weight-class,
and exponential functions of the number of groups N. This shows that his approach is effective to
problems in which N is small.

In this paper we propose an analytical method to solving the ASP on a single runway so as to
minimize the sum of the time interval called the time separation between successive landing aircraft
in a final approach. We have slightly suspected as whether the optimum solution of the ASP
would be making it land at the small order of the type of aircraft, experientially. In this paper, it
is shown clearly by proof that the method is the optimum. Moreover, some sufficient conditions
for this method being realized were considered.

The proposed analytical method may have a possibility of reducing a burden in a work of
airport controllers because this method is possible to calculate the optimum permutation of landing
aircraft immediately. In the paper this method is compared with other methods containing the

FCFS strategy.
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2. Statement of Problem

2.1 Aircraft sequencing problem

Consider a single runway as shown in Fig. 1, which is used for landing of aircraft. Aircraft
paths are merged over the gate to the final approach. To prevent collision between successive
aircraft and wake turbulence to a trailing aircraft j by a leading one 4, a minimum distance
separation s,(;) .(;) between 1 and j is strictly required, while they are both airborne. The Japanese
CAB's air traffic control system standard [4] subdivides aircraft into three classes to s..), «(j) (Table

1). Those are the types of ‘heavy’ (H), ‘large/medium’ (L/M) and ‘small’ (S).

Table 1. Minimum distance separation (in nautical miles)

Trailing aircraft

Leading aircraft H L/M S
(Se(i), g(j))z H 4 5 6
L/M| 3 3 5

S 3 3 3

Table 2. Ground speed and runway occupancy time

Type Ve(d) Oe(s)
(knot) | (sec)
H vy 70
\Y
L v 60
\Y%
M UM 55
Vv
S Vs 50

Table 3. Minimum time separation (in seconds)

Trailing aircraft
H L M S
Leading aircraft H | 96 157 207 320 |

(T, o)) = L | 72 83 123 262
Ml 72 83 98 236 |
S| 72 83 98 120 |
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e RUNWAY Ve(i)
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! Oe(i) [: COMMON PATH Se(i), e(j)

Figure 1. Final approach and runway

On the other hand a leading aircraft i must be safely out of runway before the next trailing
aircraft j begins to touch down onto the runway. Using Blumstein’s formula [2], the minimum
distance separation s, .(;) based such safety rules can be changed to the interval called the

minimum time separation T, .(;) between successive arrivals at the runway as that

I+ 8,00 o5 l
T.(s), e(y=max <lhe(i)  0c(i) for v.)> ve(j) (1)
Ve (5) Ve (3)
Suli) o(i
Temeu):max{ —2)—(2—;& Oe(n} for ve) < v (2)
e\y

where [ is the length of the common path in final approach, V¢ and o,(;) are ground speed on the
approach and runway occupancy time which are functions of the type of aircraft e(1),
respectively. Assuming /=5 nautical miles, v,¢;) and o,;) in Table 2, a matrix of the minimum time
separation T, e(;) is obtained (Table 3). Then, the ASP considered in this paper is the
sequencing problem to the set of # given aircraft in a single runway, so as to minimize the total of

the processing cost defined by the minimum time separation T, o(;)

2.2 Formulation of the ASP
The ASP is defined as
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P(Q: Minimize [ =;Z]', Toti), e ()% (3)
Subject to j:ilx,-,s 1, i=1,..m | (4)
g_,‘lxijé 1, ;=1 ..n (5)

,é gx.-]:n—l (6)

x; €10, 1 (7)

x5 (1 <i#5< ) doesn’t
generate any subtours (8)

more than one
where

1, if leading 1 is followed by trailing j
Xii—
’ 0, otherwise.

The objective function (3) minimizes the total minimum time separation. The assignment con-
straints (4) and (5) together with the integrality constraints (7) guarantee that at most one trailing
aircraft is assigned to each leading aircraft and guarantee that at most one leading aircraft is
assigned to each trailing aircraft, respectively. (6) denotes that exactly n—1 trailing aircraft
(n—1 leading aircraft) exist in the permﬁtation of n aircraft. The ‘subtour’ in the (8) is defined as
a partial permutation except the complete permutation ordered by each of a set of # aircraft which
makes a landing exactly once onto the runway. The subtour elimination constraints (8) guarantee
that all subtours are removed, but the complete permutation isn’t removed. However, the problem
PO has a structure similar to the Traveling Salesman Problem to be proven NP-hard by R. M. Karp
in 1972.

3. Approach from Partial Assignment Problems

3.1 Relaxation problem of the ASP
Consider the following relaxation problem which has been removed the equation (8) from the

P0, and replaced T,;) e(j) by cost matrix ¢; which is equivalent to it.




BRAZR~Y AT X Y PEHRKE $25 2004

P1: Minimize ] :'Zl Z‘lcﬁxﬁ (9)
i=] j=
Subject to i;xijé 1, =1, ., n 10
F=
Zixué 1, =1, .. n 1y
3 xy=n—1 12
i=1j =1
€10, 1}, 4 =1 ., n 13

where x; is assignment variables which assign j to 4. ;=1 if it assigns j to ¢ and x;=0
otherwise. Each of elements x; of a matrix X=(x;) corresponds to each of elements c;j of a cost
matrix C=(c;). (9) is the total cost based on the whole assignments. The problem P1 is called
the partial assignment problem (PAP) which assigns #—1 trailing aircraft to n—1 leading ones
among # aircraft. It is obvious that any feasible solutions of PQ are always included in the
feasible region of P1 because P} is the relaxation problem of PQ, therefore the feasible region of P1
is lager than that of PO. Thus, if the optimum solution of P1 has the complete permutation on #

aircraft, this solution is the optimum solution of the original problem PQ.

3.2 Property of cost matrix

In order to investigate the cost structure and properties in the cost matrix C=(c;j), we give
some definitions and prove some auxiliary theorems.
[Definition 3.1]: totally monotone

An nXn matrix C=(ci,v) is called a fotally monotone if any j<k satisfies ¢;<cyand c;> ¢y such

that

ap < e < < o
Vi Vi e Vi
1 S o < < oom
c= | W Vi v
VI \Y! . VI
il < ¢p < < o

Then, the value of elements of C decreases left-downward.
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[Definition 3.2]: Monge matrix
An nXn matrix C=(c;) is called a Monge matrix if C satisfies the so-called Monge property such

that

Cij+ Citk j+1 < G, j+l+ Citkj (14)

1<i<i+6<n 1<j<j+1<n k i21

for the four elements ¢y, ¢+ Citkj Ci+rj+ |3l Here, let call an (n—1)X(n—1) matrix
C=(c;)2<i<m, 1<j<n—1) the left-lower matrix of C. Moreover, let call an 1X# matrix
C?=(c;)(i=1, 1<5<m), an (n—1)Xn matrix C"=(c;)(2<i<n, 1<j<n) and an (n—1)X1 matrix
C'=(c;)2<i<m, j=n) the upper matrix, the lower matrix and the right—down matrix of C
respectively.
[Definition 3.3]: locally monotone

An nXn matrix C=(c;) is called a locally monotone if any j and i in the C=(c;) satisfies the

following two properties:

(i) cy>maxle2 <i<ml, 1<57<n {15

(ii) maxicl <j<n—1U<cp 1 <i<

Using those definitions, the following lemma is obtained.

[Lemma 3.1]

If an nXn matrix C=(c;) in the partial assignment problem P1 is totally monotone, then the
problem P1 is reduced to an assignment subproblem P2 which is composed for an (n—1)X(n—1)

left-lower matrix C’, as shown below.
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P2: Minimize ] =i:2 :Z;]llc,-,-x,»j (16
Subject to gx,-,: 1, =2, ..,n 17
éxg= 1, j=1..,n—1 (18

% €10, 11, =2, ., »n a9

Proof: It is obvious because any assignments in C* and C” can replace the assignments having
smaller cost in C' on the same columns and rows, respectively by the definition 3.1, (10) and (11).
[Lemma 3.2]

If an (n—1)X(n—1) left—down matrix C' is Monge matrix and has exactly one assignment
x;=1 for any rows ¢ and any column j in the X'=(x;) corresponding to cij, then the sum of the cost
of n—1 diagonal elements ¢;=(1<i<n—1) in the C'=(c;)(1<4, j<n—1 for renumbering of i and j)
is less or equal than the sum of the cost of #—1 elements ¢; corresponding to any assignments in
the X'=(x;). Furthermore, this diagonal assignment serves as the optimum permutation of the cost
minimum which consists of #—1 elements simultaneously.

Proof: Consider a set of two elements t;m=1 (1<m<n— 1) and ;=1 (1<i<#un—1) on the row i
and column 1, respectively. If either x;,,=1 or x;=1 is a diagonal element, such two elements hold

the same position, but otherwise by Monge property, we can obtain the following relation

it Cm < Cimt Cui 20

Therefore, a more smaller sum of the cost ¢;+ ¢y, is obtained by assigning 0 to %, and x; on those
low ¢ and column ¢ and assigning 1 to x; and x,. By means of repeating those operations from
i=1 to i=n—1 to the C" and X', finally the assignment by n—1 diagonal elements is obtained
which is that of the minimum cost. This assignment constitutes the permutation which surely
consists of n—1 elements.

[Lemma 3.3]

If an #Xn matrix C=(c;) in the partial assignment problem P1 is locally monotone, then the
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problem P1 is reduced to an assignment subproblem P2 which is composed for an (n—1)X(n—1)
left-lower matrix C'.

Proof: It is the same as the proof of Lemma 3.1 and proven by the definition 3.3, (10) and (11).
[Theorem 3.1]

If an nXn matrix C=(c;) is the totally monotone and Monge matrix, then the optimum
assignment and its cost for the problem Pl are given by the n—1 diagonal elements x; and
c:(1<i<n—1) in the left-down matrices X' and C' respectively. This assignment serves as the
optimum permutation of the Problem Pl simultaneously.

[Corollary 3.1}

If an nXn matrix C=(c;) is the locally monotone and Monge matrix, then the optimum
assignment and its cost for the problem Pl is given by the n—1 diagonal elements #; and
ci{1<i<n—1) in the left-down matrices X’ and C' respectively. This assignment serves as the

optimum permutation of the Problem P1 simultaneously.
4. Structure of the ASP

4.1. Extension of cost matrix

Consider the case where six aircraft land onto the runway as shown in Fig. 2. Since the

Landing aircraft in stack
L+ H St M Lz S2

Trailing aircraft
H Lz Lt M S2 S

_ H | 96 [157[157]207 | 320(320
Leading N
airoraft 2| 72 | 83 | 83 |123|@62) 262

c= U 72)| 83 | 83 |123] 262|262
M [ 72 |(83) 83 | 98 | 236|236

83

S| 72 83 | 98 [ 120]120
sil72 183183 @8) 120|120

Minimum time separation matrix

Figure 2. Assignment of landing order by matrix C
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minimum time separation matrix (T, .(;)) generated by the Blumstein’s formula is the 4 X4 matrix,
first, 6X6 cost matrix C for the six aircraft (n=6) is created using matrix (T,u) .(;)- In the
matrix C, it assigns a row index one after another by the large order of the type of aircraft. It
assigns similarly about columns of C. The aircraft of the same type assigns a following aircraft
first. For example, the assignment of the case where the aircraft land in the order of Ly > H—
S; > M — Ly — S; is shown by round mark O in Fig. 2. The indices such as L;, L, express the
index of the aircraft number of the same type. The total of the number in the round marks is the

total use time of the runway.

4.2. Structure of cost matrix

Since the matrix T shown in Table 3 has the properties of both totally monotone and locally
monotone, it is clear that C generated by the completely same Blumstein’s formula also has the
properties of the both. As a special case, the portion with which it is not satisfied of Monge
property in the matrix T exists. The place without Monge property (non-Monge) is a part of the small
matrix which consists of four elements Tgyy, Tys, Tiy and Tps of the rectangle containing the
element Tys. The cause which produces the portion of non-Monge mainly relates to the value of
Tys. That is, it is the case where the leading aircraft is the type of H and the trailing the type of
S. This is equivalent to the case where the trailing aircraft is influenced most with vortex
generated by the leading aircraft. In all the places except the element Tys in the matrix T, the

Monge property is satisfied.

4.3. Examinations on non-Monge matrix

However, as the proof of Remma 3.2, the influence of non-Monge is completely extinguished
using the properties of Monge (14) and the monotone in the process which changes the cost sum of
two elements into the much smailer cost sum of othér two ones. If the following conditions are
realized theoretically, the optimum éolution of the ASP isn’t influenced by the portion of non-Monge

of THS-

(Tas— Tug)— (Trs— Tin)

+(Tus— Tr) — (Trs— Tim) 20 @1
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The 3rd term and the 4th one of the left side of (21) are the portion without structure of
Monge. Since the difference of the Ist term and the 2nd one are usually larger than that of the 4th
and the 3rd, the (21) is satisfied. Therefore, the following theorem is obtained.

[Theorem 4.1]

For the aircraft sequencing problem PO with #X#n matrix C=(c;) made by the Blumstein's
formula, the optimum assignment to the problem PO is given by the n—1 diagonal elements
ci{1<i<n—1) in the left-down matrix C'. Therefore the optimum sequence of this problem is
given by a non-heavier order of the types classed on the aircraft take-off weight.

As shown in Fig. 3, this assignment of S} - S; - M — Ly - L; —» H shown by the round mark
(O makes only one sequence having the minimum cost. The theorem 4.1 shows that the

permutation arranged in small order about the type of the aircraft is the optimum permutation.
5. Examples

5.1. Case of totally monotone
The first example is related with the case in which the nX# matrix C=(c;) has the structure

of the totally monotone and Monge matrix.

Optimum sequence of landing

St S22 M Li L2 H

Runway

Trailing aircraft ('
H L Li M S /S1

. 96 | 157157120713 320
Leading >

aircraft L2 \79 (83
c="" |7 \@
83

83 [ 123262 | 262

83 | 123 (262 ]| 262
M| 72 (@ 236 | 236
S2172 |83 | 83 120

S1 17283 83

08
(98) | 120
(
98 (120 120

Minimum time separation matrix

Figure 3. Assignment of optimum permutation of the ASP
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we consider the example shown by [6]. Aircraft of n=15 classified into three types of H, L

and M are waiting for landing. The minimum time separation matrix is given by Table 4 (in

seconds). The problem is to find the optimum landing order to minimize the total sum of the

minimum time separation between successive aircraft under the given cost matrix which has the

structure of the totally monotone and the Monge. From the extended 15X15 cost matrix, we can

obtain the optimum permutation which is given by the 14 diagonal elements in the left-down matrix

(', ie. the optimum permutation of the landing aircraft is given by the non-decleasing order of the

size of the aircraft.

Table 4. Minimum time separation (in seconds)

Trailing aircraft

Leading aircraft H L M
(Tuw.e)= H [ 96 181 228

L 72 80 117

M | 72 80 90

The landing order and the total use time (in seconds) of the runway obtained by this method is

shown with other methods in Table 5. In this table the MPS (5) is the approximation method with

Table 5. Example of the totally monotone ASP

Order 0 1 2 3 4 5 6 7 8
Initial L H H M L L M L H
FCFS L H H M L L M L H
MPS (5) L H H H L L L L M
Proposed L M M M M L L L L
9 10 11 12 13 14 15 use time error (%)
L H M M L H L — —

L H M M L H L 1729 30.6

M M M L L H H 1400 58

L L H H H H H 1323 0
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MPS=5 by [6]. The MPS is the DP-calculating method the CPS was incorporated. The proposed
method does not include an error at all since this method constitutes the true optimum order.
FCFS and MPS (5) methods include 5.8% and 30.6% of the error, respectively. The result shows

that the optimum solution allows saving of about 6% to 30% on runway utilization.

Table 6. Minimum time separation (in seconds)

Trailing aircraft
H L M S
Leading aircraft H | 96 181 200 228
(To0), e(j)= L|72 70 100 130
M| 72 70 80 110
S| 72 70 80 90

5.2. Case of locally monotone

The second example is related with the case in which the nX#n matrix C=(c;) has't the totally
monotone. we consider the example from real-world problems shown by Bianco and Bielli [1].
Aircraft of =30 classified into four types of H, L, M and S are waiting for landing. The
minimum time separation matrix (T,q) .(;)) is given by Table 6 (in seconds). Therefore, matrix
C=(c;;) hasn’t the structure of totally monotone since for example the C=(c;) includes the elements
which is in the relation of ¢y > ¢z ¢31>>c32 and ¢4 > cs2.  However the C=(c;) has the structure of
locally monotone and Monge matriz. The problem is to find the optimum landing order to minimize
the total sum of the minimum time separation between successive aircraft under the given cost
matrix which is the locally monotone and the Monge.

Table 7 illustrate the results of this realistic large scale problem. The total landing time is
3266 seconds for FCFS, 3083 seconds for Bianco's method and 2578 seconds for the proposed
method. Therefore, the FCFS, Bianco’ method and our method include 26.7%, 19.6% and 0% of the
error, respectively. These results show that the proposed method can get about 20-26% of the

savings of time on runway utilization.
6. Dynamic Aircraft Sequencing Problem

In this chapter, we consider applying the proposed technique to the dynamic aircraft

sequencing problem. In practice, since the aircraft arrives at an airport every moment, the
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Table 7. Example of the locally monotone ASP

Aircraft FCFS Proposed Method (optimum) Bianco’s Method
No. Type (sec) - : - :
Landing  Type Landing | Landing Type Landing
seq. time (sec) seq. time (sec)
1 H 0 1 H 0 1 H 0
2 H 96 14 S 228 2 H 96
3 H 192 23 S 318 3 H 192
4 L 392 13 M 398 5 H 288
5 H 464 20 M 478 6 H 384
6 H 560 27 M 558 4 L 584
7 L 760 4 L 628 8 H 656
8 H 832 7 L 698 11 H 752
9 L 1032 9 L 768 7 L 952
10 L 1112 10 L 838 9 L 1032
11 H 1184 15 L 908 12 H 1104
12 H 1280 16 L 978 14 S 1332
13 M 1461 17 L 1048 10 L 1412
14 S 1591 24 L 1118 15 L 1492
15 L 1671 26 L 1188 16 L 1572
16 L 1751 28 L 1258 13 M 1642
17 L 1831 2 H 1330 18 H 1714
18 H 1903 3 H 1426 19 H 1810
19 H 1999 5 H 1522 20 M 1991
20 M 2180 6 H 1618 17 L 2091
21 H 2252 8 H 1714 23 S 2201
22 H 2348 11 H 1810 21 H 2273
23 S 2656 12 H 1906 22 H 2369
24 L 2656 18 H 2002 25 H 2465
25 H 2728 19 H 2098 24 L 2665
26 L 2928 21 H 2194 26 L 2745
27 M 2998 22 H 2290 27 M 2815
28 L 3098 25 H 2386 28 L 2915
29 H 3170 29 H 2482 29 H 2987
30 H 3266 30 H 2578 30 H 3083

solution method for the static aircraft sequencing problem described above needs to correct to the
solution method of a dynamic sequencing problem. Since the proposed method can calculate an
optimum landing order in slight time, it does not need to restrict the number of aircraft in a
stack. However, the solution by this method has the problem from which the landing order of a

large-sized aircraft becomes behind more.
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Here, in order to avoid such a problem and to apply this method to the dynamic problem, how
to adjust the size of a stack is considered. There are two in the method. One is the method of
making the number of aircraft per stack a variable under fixation of the number of stacks.
Another is the method of making the number of stacks a variable under fixation of the nﬁrﬁbef of
the aircraft per stack. Although the proposed method is applicable to the both, the latter case is

considered here.

On our dynamic problem, number # of aircraft per stack is specified first. When # aircraft
arrive into the first stack, the dynamic ASP to # aircraft is solved. Next, the stack is cleared.
We call this stack the second stack. Then, after # following aircraft reach the 2nd stack, the 2nd
dynamic problem is solved. This processing is performed about all the stacks. Actually, one
stack can be substituted for all the stacks. Fig. 4 shows the time until the last aircraft ends
landing, when changing the number of aircraft in the stack for the same example of locally monotone
ASP. That is, it is the completion time of arrival of the aircraft. As shown in this figure, the
completion time of arrival increases toward the completion time of the FCFS strategy gradually as

the number of aircraft per stack decreases. However, if the number of aircraft per stack is

3500
< 3000 /
£
f 2500
o —— No. of Stack
g 2000
= )
£ 1500 +C.omplet|on
e Time
g 1000
o
© 500

1 3 S 1 9
301510 8 6 5 4 3

No. of Aircraft / Stack

Figure 4. Completion Time of Arrival versus Number of Aircraft Contained in One Stack
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reduced by increasing the number of stacks, although the total of landing time will increase, the

problem that landing of a large-sized aircraft becomes behind is avoidable.

7. Conclusions

In this paper we explained an analytical method to obtain optimal solutions for the ASP on a
single runway by directing our attention to the structure of the ASP and by considering the
relaxation problem of the original ASP using the PAP.

It was shown that the optimal solution could be found easily in ASP which had Monge
structure. On the other hand, the ASP so as to minimize the sum of the minimum time separation
calculated by the Blumstein' formula has the structure of monotone. Therefore, The optimum
sequence for the ASP can be obtained easily.

In this paper it is shown that the influence of non-Monge is completely extinguished by using
the properties of the Monge and the monotone. This analysis shows that the optimum assignment to
the ASP is given by the non-heavier order of the types classed on aircraft take-off weight. By
this simple strategy, the optimum solution can be obtained immediately. However, in order to
apply to realistic traffic, this method needs to extend or modify according to various situations.

The proposed method is extended to the dynamic aircraft sequencing problem. If the number
of aircraft per stack is reduced by increasing the number of stacks, although the total of landing

time will increase, the problem that landing of a large-sized aircraft becomes behind is avoidable.
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